\square

B. TECH.

(SEM IV) THEORY EXAMINATION 2022-23
ENGINEERING MATHEMATICS IV
Time: 3 Hours
Total Marks: 100
Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

$2 \times 10=20$
(a) Obtain a partial differential equation that governs the family of surfaces

$$
z=(x-\alpha)^{2}+(y-\beta)^{2} .
$$

(b) Find the complete integral of the partial differential equation

$$
z=p x+q y+\frac{p}{p+q}, p=\frac{\partial z}{\partial x} \& q=\frac{\partial z}{\partial y} .
$$

(c) Classify the partial differential equation

$$
r+2 s+\left(\sin ^{2} x\right) t+q=0, r=\frac{\partial^{2} z}{\partial x^{2}}, \quad s=\frac{\partial^{2} z}{\partial y^{2}} \& t=\frac{\partial^{2} z}{\partial x \partial y}
$$

(d) Write down the two dimensional heat equation.
(e) What is the relation between the regression coefficients and the coefficient of correlation?
(f) The fourth central moment is 48 . What must be its standard deviation in order that the distribution be mesokurtic.
(g) A and B are any two independent events such that $P(A)=0.4, P\left(A U B^{c}\right)=0.7$. Find the $P(B)$, where B^{c} is the complementary event of event B.
(h) The random variable X is said to follow the Normal distribution with mean 9 and standard deviation 3, find x^{*} such that $P\left(X>x^{*}\right)=0.16$.
(i) Write down the definition of the null hypothesis.
(j) What is Statistical Quality Control (SQC)? Define in brief.

SECTION B

2. Attempt any three of the following:

(a) Find the general solution of the partial differential equation

$$
(y+z) p+(z+x) q=(x+y) .
$$

(b) Solve the partial differential equation by the method of separation of variables $4 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=3 u$, given that $u=5 e^{-y}-e^{-5 y}$, when $x=0$.
(c) Use the method of least squares to fit the curve $y=a b^{x}$ for the following data

x	2	3	4	5	6
y	144	172.8	207.4	248.8	298.5

(d) In a normal distribution, 12% of the items are under 30 and 85% items are under 60 . Find the mean and standard deviation.
(e) The annual rainfall in Lucknow city is normally distributed with mean 45 cm . The rainfall during the last five years are $48 \mathrm{~cm}, 42 \mathrm{~cm}, 40 \mathrm{~cm}, 44 \mathrm{~cm}$ and 43 cm respectively. Can we conclude that the average rainfall during the last five years is less than the normal rainfall? Test at 5% level of significance. [The tabulated value of $t_{0.05}=2.776$ and $t_{0.1}=2.132$ for 4 degree of freedom.]

SECTION C

3. Attempt any one part of the following:

(a) Find the solution of the partial differential equation

$$
\left[2 D^{2}+5 D D^{\prime}+3\left(D^{\prime}\right)^{2}\right] z=y e^{x}, D=\frac{\partial}{\partial x}, D^{\prime}=\frac{\partial}{\partial y}
$$

(b) Find the complete integral of the partial differential equation

$$
\left(p^{2}+q^{2}\right) x=p z
$$

4. Attempt any one part of the following:
$10 \times 1=10$
(a) A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially in a position given by $y=\operatorname{asin}^{3}\left(\frac{\pi x}{l}\right)$. If it is released from rest from this position, find the displacement.
(b) An insulated rod of length 1 has its ends A and B maintained at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively until steady state conditions prevail. If B is suddenly reduced at $0^{\circ} \mathrm{C}$ and maintained at $0^{\circ} \mathrm{C}$, find the temperature at a distance x from A at time t .
5. Attempt any one part of the following:
$10 \times 1=10$
(a) If $4 x-5 y+33=0$ and $20 x-9 y=107$ are twolines of regression. Find the mean values of x and y, the coefficient of correlation and the standard deviation of y if the variance of x is 9 .
(b) First four moments about 2 are $1,2.5,5.5$ and 16 respectively. Find the first four central moments, moments about origin and coefficient of skewness.
6. Attempt any one part of the following:

10x1=10
(a) A bag A contains 8 white and 4 black balls. A second bag B contains 5 white and 6 black balls. One ball is drawn at random from bag A and is placed in bag B. Now, a ball is drawn at random from bag B. It is found that this ball is white. Find the probability that a black ball has been
transferred from bag A.
(b) If X variable follow the Poisson distribution such that
$P(X=2)=9 P(X=4)+90 P(X=6)$. Find mean, variance and distribution.
7. Attempt any one part of the following:
$10 \times 1=10$
(a) In an experiment on pea breading the following frequency of seeds were obtained:

Red \& Yellow	 Yellow	 Green	 Green	Total
315	101	108	32	556

Theory predicts the frequencies should be in the proportions 9:3:3:1. Examine the correspondence between theory and experiment. Test at 5\% level of significance. [The tabulated value of $\chi^{2}{ }_{0.05}=7.815$ for 3 degree of freedom.]
(b) The given table shows that the value of sample mean \bar{X} and the range R for 10 samples of size 5 each. Draw mean and range chart and also comment on the state of control of the process.
(Given $A_{2}=0.58, D_{3}=0, D_{4}=2.115$).

Sample No.	1	2	3	4	5	6	7	8	9	10
\bar{X}	45	46	48	52	53	37	51	46	47	38
R	4	5	6	7	4	5	7	6	6	4

